(a-b)(a^2+ab+b^2)=

Simple and best practice solution for (a-b)(a^2+ab+b^2)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (a-b)(a^2+ab+b^2)= equation:


Simplifying
(a + -1b)(a2 + ab + b2) = 0

Reorder the terms:
(a + -1b)(ab + a2 + b2) = 0

Multiply (a + -1b) * (ab + a2 + b2)
(a(ab + a2 + b2) + -1b * (ab + a2 + b2)) = 0
((ab * a + a2 * a + b2 * a) + -1b * (ab + a2 + b2)) = 0

Reorder the terms:
((ab2 + a2b + a3) + -1b * (ab + a2 + b2)) = 0
((ab2 + a2b + a3) + -1b * (ab + a2 + b2)) = 0
(ab2 + a2b + a3 + (ab * -1b + a2 * -1b + b2 * -1b)) = 0
(ab2 + a2b + a3 + (-1ab2 + -1a2b + -1b3)) = 0

Reorder the terms:
(ab2 + -1ab2 + a2b + -1a2b + a3 + -1b3) = 0

Combine like terms: ab2 + -1ab2 = 0
(0 + a2b + -1a2b + a3 + -1b3) = 0
(a2b + -1a2b + a3 + -1b3) = 0

Combine like terms: a2b + -1a2b = 0
(0 + a3 + -1b3) = 0
(a3 + -1b3) = 0

Solving
a3 + -1b3 = 0

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Add 'b3' to each side of the equation.
a3 + -1b3 + b3 = 0 + b3

Combine like terms: -1b3 + b3 = 0
a3 + 0 = 0 + b3
a3 = 0 + b3
Remove the zero:
a3 = b3

Simplifying
a3 = b3

Combine like terms: b3 + -1b3 = 0
a3 + -1b3 = 0

The solution to this equation could not be determined.

See similar equations:

| (a-b)(a+ab+b)= | | 4x-7=-36 | | 8+3r=r-2r | | 6x+9(3x+45000)= | | 6m-3m+12=0 | | 3-2x=3+5x | | 2m^2-3m-7=0 | | -2b+2b=8+b | | y+2*(7-y)-5=13*(y-9) | | -4+5n=-8+5n | | X-4+7=-4+3x-3x | | 2x=6+8 | | 5x+14.8=36.8 | | 7b=-49 | | -x+2x=-14-x | | x^6-13x^3+40=0 | | x+2.25=19 | | c^2-12c+35= | | 3x-2=6+4+5x-4 | | x=5+8 | | 5x+9(2x+25000)= | | -6y^2+30= | | 5r-8r=1-4r-1+2 | | 5(p+7)=14 | | 18-11,51= | | 2x-18=5+x | | 2b^2+1-25=0 | | 18-11.51= | | 8x+11(3x+38000)= | | 16-4r-8r=1-7r | | 2(2x-3)+3(2x+3)=23 | | 36t-64=120t+56+72 |

Equations solver categories